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The finite sequences of polynomials {PnIZ~o generated from three-term
recurrence relations with complex coefficients are considered. First a general
method is presented which allows the determination the regions where all zeros of
the polynomials in question are located. Next one way is followed, say I,u n I< IP. I,
and the first results are established. In the second paper (J. Gilewicz and E.
Leopold, Location of zeros of polynomials satisfying three-term recurrence
relations. II. General case with complex coefficients, in preparation) the reverse
way, I,u n I> IP. I, is followed. Subsequent papers (E. Leopold, J. Approx. Theory 43,
15-24 (1985); E. Leopold, Location of zeros of polynomials satisfying three
term recurrence relations. IV. Application to some polynomials and to generalized
Bessel polynomials, in preparation) are devoted to some particular cases and to
numerical applications. © 1985 Academic Press, Inc.

1. INTRODUCTION

In recent papers Saff and Varga [3] and De Bruin, Saff, and Varga [4]
consider the problem of location of zeros of polynomials generated from a
three-term recurrence relation with positive coefficients. These relations
imply the continued fraction expansion and we also start from this classical
idea already applied by Sherman [1] and used again by Wall [2]. When the
coefficients of the recurrence relations are known, the problem is, of course,
deterministic. But the important point is to find the optimal estimations using
only some general properties of these coefficients. In the present paper we
use the information given by the absolute values of coefficients. Secondly we
follow only one possible way of proof, where the absolute value of the ratio
fJn=Pn-J/Pn is always less than that of the pole of the corresponding
homographic transformation: see (2.9). The second paper [7] is devoted to
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the reverse case. In the third paper [8] we apply the previous results to the
relation generating the denominators of the rows in the Pade table (or
numerators of columns) [5]. In particular the case of positive coefficients
leads, by means of Pade approximants, to the functions of class S [5,6]. In
the fourth paper [9] we examine the relation generating the numerators or
denominators of diagonals in the Pade table. Here the case of positive coef
ficients corresponds to the classical orthogonal polynomials and, by means
of Pade approximants, to the Stieltjes functions. Many numerical results,
concluding our work, are given in that paper.

In the present paper the zeros of the polynomials in question are located in
annular regions. With the additional conditions on the coefficients of the
recurrence relation these regions can be improved. For instance, positivity
[8] allows improvement of the annular region to some moon-like region. In
particular the improvement of the results of [3] and [4] will be explained in
the two subsequent papers [8,9].

2. GENERAL CASE

(2.1 )
P-I == 0, Po '* 0, Vn~ 0: deg B (n) = 1, Vn ~ 1: deg A(n) <2.

Of course we can distinguish another natural case:

Let {Pn}n>o be a sequence of polynomials of respective degrees n which
satisfy the three-term recurrence relation, where B(n) and A(n) are given
simple polynomials:

Vn ~ 0: Pn+ 1 = B(n)Pn-A(n)Pn-1'

Vn ~ 1: deg Ben) = 0, degA(n) = 2

or the general recurrence relation with no real interest:

where the polynomials Q(n)' B (n) and A (n) must be chosen so that all the
polynomials Pk are of degree k. Though we are not concerned with these
cases in this paper, the proposed method can be easily applied to them.

If in (2.1), for some fixed n and complex z, the following conditions are
satisfied:

A(n)(z) Piz) Pn+ )(z) '* 0,

then relation (2.1) can be replaced by

(2.2)

Pn A(-;;;
Pn+ 1 = A 0t;B(n) -Pn-I/Pn'

(2.3)
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which can be written as follows:

Il n+! = f3 '
n -Iln

where

3

(2.4)

The last relation can be considered as one value of the following
homographic transformation:

(2.5)

This can be iterated with suitable conditions (2.2) and, because 110 = 0, we
obtain

where fog denotes the composition f( g); this is the finite continued fraction
representation of 11 n'

Let d denote the complex z-plane with the zeros of A(n) deleted; then for
all z belonging to d we have Pn+ ! (z )*°if and only if 11iz) * f3n(z). This
property follows clearly from assumptions (2.2) leading to relation (2.3). If
this relation holds for all n considered, then we have the following
proposition:

PROPOSITION 2.1. Let {Pn}~=o be a finite sequence of polynomials
satisfying recurrence relation (2.1) and

(2.6)

Then

if and only if

(2.7)

In many particular cases the set d N can be modified by addition of certain
zeros of A (n)'s which are obviously not zeros of Pn' For instance, if the only
zero of A (n) is the point z = 0, then d N can be replaced by C.

Our method is aimed to exploit the relation (2.7) in order to determine the
zero-free regions for polynomials. We shall use only some global information



4 GILEWICZ AND LEOPOLD

on the poles Pn: moduli, real parts or other quantities, depending essentially
on the general properties of the B(n)'s and A(n)'s. In the present paper we
consider the case of moduli, and consequently, the transformations of discs
or complements of discs (with respect to discs).

The closed disc D(O, Yn) of radius Yn< IPnI centered in the origin of the
wn-plane is mapped by (2.5) to the closed disc of radius Pn+l centered in
wn+ 1 in the wn+l-plane:

The last disc is imbedded in the closed disc D(O, R n+ I)' where

(2.8)

Except for the first step, where Po = 0, we can also examine the transfor
mations of the complements of discs D(O, Yn) with Yn>IPn I. Finally we
exploit relation (2.7) in each step, following two complementary ways:

(2.9)

or

(2.10)

This forms a descending tree of possible ways of analysis. The mixed ways
passing through (2.9) and (2.10) imply too many additional conditions for
the coefficients of the recurrence relation. Since we will use particular
conditions as little as possible, we analyze only two ways: condition (2.9) for
all n in the present paper, and condition (2.10) for all n in the next paper
[7].

If we can find bounds, say R n, R:, Yn' Y: such that

IPnl ~Rn~R:,

Y: ~ Yn < IPnl,

(2.11 )

(2.12)

then inequality (2.9) will be always satisfied if the following inequality holds:

(2.13)

Next we deduce the zero-free regions from the last inequality.
To obtain (2.11) we must examine the recursive determination of Pn ; if

Pn-l belongs to the disc D(O, Yn-I) with Yn-I < lPn-II, then R n is given by
(2.8). The radius Yn can be found directly from IPn I. The important point is
to determine the optimal bounds for R nand Yn •
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3. FIRST THEOREM; CASE l.unl < IPnl
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As stated, the reverse case will be examined in the next paper [7]. The
conditions on the coefficients will be more complicated than in the present
case.

THEOREM 3.1. Let {Pn}~=o be a finite sequence of polynomials of
respective degrees n which satisfy the three-term recurrence relation with
complex coefficients:

Vn> 0: Pn+ I (z) = (bn+ b~z) Pn(z) - (an +a~z + a~z2) Pn_l(z), (3.1)

where

and let d N denote the following set:

d N = {z Eel an + a~z + a~z2 =F 0 Vn <N}.

Then the region gN contains no zero of {Pn}~~~:

where g;, and g;.; are defined in (i) and (ii), respectively.

(i) The following intervals,

(3.2)

10 = ]0, Ibo/b~I];

1~ m <N: In = ] I:bn~ 1- (I :;~ 1
2

-I b~::bJ )1/2,

I:;~ 1+ (I :;~1
2

-I b~::bj) 1/2[, (3.3)

are nonempty if and only if the following conditions hold:

bo=F 0; 1~ n <N: 4lanb~1 < Ib~_lb~l.

If the intersection~ of these intervals is not empty:

Y N = n In =F 0,
O<;,n<N

then the region g;, is not empty and is defined as follows:

g,(,={zEdNllzl~max min xn(d)},
dE.Y N l<n<N

(3.4)

(3.5)

(3.6)
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where the functions Xn are defined in Y Nby:

1
a: * 0: xn(d) = 2 Ia: I (I b~ - I b~ Id - 1a~ I- Ib~ _ Ibn I+LI ~/2),

LIn = Ib~_l b~ 1(1 b~_l b~l- 41 a: I) d2

+ 2Ib~_11(2Ia:bn I-I b~_l b~bn I-Ia~b~I) d

+ (la~1 + Ib~_lbnl)2 - 4Iana:l;

11-0' (d)-d lanl+la~ld
an - ,xn - - Ib~_,I(lbnl-lb~ld)+ la~1

(ii)

f,. = [ max dn , 00 [
O<;n<N

exists as an interval ofpositive numbers, where

(3.7)

(3.8)

(3.9)

do = Ibo/b~ I,

1~n N:d = Ib~_II(lb~_lb~bnl-2Ia:bnl+la~b~I)+2L1~I/2 (3.10)
"" < n Ib~_lbnl(lb~_lb~l- 4Ia:l)

LI~ = la:b~_II[/a~b~_l b~ I+ la~b~I(la~ I+ Ib~_, bnD

+ lanb~l(lb~_lb~l- 4Ia:I)]

if and only if the following conditions hold:

1~ n <N: 41a:1 < Ib~_lb~l. (3.11 )

In that case, the region g~ is not empty; it contains the point at infinity and
is defined as follows:

g~= U {ZE..#NI max x~(d)~lzl~ min x~(d)}, (3.12)
def

N
l<;n<N l<;n<N

where the functions x~ and x: are defined in f,. by:

1
a:*O:x~(d)= 2ja:1 (lb~_lb~ld-la~·I-lb~_lbnl-Ll~/2) (3.13)

x:(d) = xn(d)

a: = 0: x~(d) = xn(d)

x~ = 00.

(xndefined by (3.7)),

(xndefined by (3.8)),

(3.14)

(3.15)
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Proof. We present a constructive proof. The zero-free region shall be
defined step by step by means of condition (2.9) replaced by (2.13). For
better understanding we analyze the first step, i.e., n =O. Condition (2.9)
reduces to IPol >0, that is, to the following two conditions:

Izi < Ibolb~1 or

To define the radius Yo such that Yo < IPo I, we introduce the new parameter d
as follows:

or

We obtain, respectively,

Izi >d~ Ibolb~l·

(3.16)

(3.17)

or

Suppose we carry out the analysis inside the disc defined by (3.16). In the
second step, i.e., n = 1, we also have two possibilities: 1z1 < I bllb; I or 1z1 >
Ibllb; I. The first one leads to the global condition 1zI<min (I bolb~ I, 1bllb; I),
however, the second one involves the additional condition Iblib; I<Ibolb~ I·
Clearly the last case involves in general too many specific conditions in each
step and consequently we exclude this case from our analysis. We shall do
the analysis separately, for all n, first with the conditions analogous to (3.16)
and afterward with these analogous to (3.17), where in both cases the
inequalities must be replaced by the strict ones for n > O.

(i) The case Izi < d. Suppose, for simplicity, ao+a~z + a~'z2 == 1.
Then if

Izi < d < min Ibnlb~1
O';'n<N

(3.18)

(in case mino,;,n<N Ibnlb~1 = Ibolb~l, we replace (3.18) by Izl <d ~ IbolbW,
the radii Yn and their minorants Y: can be estimated as follows:

(3.19)
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Assume now that conditions (2.13) have been required up to n - 1, then by
(2.8) we can compute R n and we obtain:

(3.20)

With the help of the last estimates, condition (2.13), after rearrangement,
becomes

n ~ 1:In (I z I) = Ia; II z 12 + [I a~ I+ Ib~ _1 1(I bn1- 1b~ 1d)] Iz I

+ [lanl-lb~_ll(lbnl-lb~ld)d]~O. (3.21)

The function In has one positive zero xn(d) given by (3.7) or (3.8) if and
only if its constant term is negative:

(3.22)

The last condition holds for d belonging to In = ]d~, d;[ defined by (3.3).
The interval In is not empty iff the quadratic function in (3.22) has two real
zeros d~ and d;, i.e., iff condition (3.4) holds.

Observe that

therefore condition (3.18) is satisfied if d belongs to In' except for the case
n = 0; then we must remember that d ~ 1bo/b~ I because d belongs also to 10 ,

However, if N > 1, i.e., n ~ 1, we can easily see that xn(d) from (3.7) is
less than xn(d) from (3.8): the parabola In (a; =1= 0) defined in (3.21) lies
above the straight lineln (a; = 0). Since xn(d) from (3.8) is less than d, then
for arbitrary x n ' (3.7) or (3.8), we have

(3.23 )

We look for the largest set {z} such that Izl < xn(d) for all n with the
additional condition (3.16). Then we define the lower hull x of the functions
x n by:

dE I N =1= 0: d H x(d) = min xn(d).
l<;n<N

(3.24)

Note that according to (3.23) the function identity d H d from (3.16) does
not contribute to the definition of the function x. Now we look for the unique
maximum of the function x. In particular if 1bo/b~ I is the right extremity of
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Y N , this maximum may be x([bo/bW. It must be included because
x(1 bo/bW <Ibo/b~ I, which assumes in fact condition (3.16). That is the
reason for taking /0 to be closed on the right. This completes the proof of the
first part of the theorem leading to the zero"free region ..9;" defined by (3.6).

(ii) The case Iz I> d. In a way similar to that of (i) we choose d such
that, instead of (3.18),

Izl >d> max Ibn/b~1
O<'n<N

(3.25)

(except that if max [bn/b~1 = Ibo/b~l, we replace (3.25) by Izi >d~ Ibo/b~I).

Then we must only change, in estimates (3.19), Ibn 1- Ib~ 1d into 1b~ Id - Ibn I
and, in (3.20), d - 1z I into 1z I - d, which, however, does not change
condition (3.21). Because the constant term in the function in is strictly
positive, inequality (3.21) has solutions only if the coefficient of Iz I is strictly
negative, which translates for d into the following condition:

I a~ I Ib
n I -d> b' b' + b' =dn •n-I n n

(3.26)

If the last condition is required, then condition (3.25) holds except for n = O.
If a~ = 0, condition (3.26) is necessary and sufficient for existence of

solutions (3.15) of inequality (3.21). In this case dn is the same as dn given
by (3.10). In particular the condition 1z 1 > d holds because, following (3.15),
we have:

x~(d) >d, (3.27)

where the strict inequality follows from condition (3.2) assuming that an' a~
and a~ are not simultaneously O. Finally any z such that 1z I ~ x~(d) satisfies
inequality (3.21) for fixed n and for d belonging to ]dn , 00 [. As we shall see
in the end of this proof, we can take instead of ]dn' 00 [ the interval [dn' 00 [,

although condition (3.21) is not satisfied for d = d n •

If a~ *- 0, the function in has two positive zeros x~ and x~ itT condition
(3.26) holds and the discriminant defined in (3.7) is nonnegative:

(3.28)

We shall show now that only condition (3.11) leads to the nonempty
region defined by (3.12). First suppose that

41a~1 > Ib~_lbnl·

Provided that the discriminant L1~ (see (3.10» of the function df--dn(d) is
strictly positive, the function L1 nhas two zeros, say d~ and d:, and inequality
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(3.28) is satisfied for d belonging to [d~, d~]. However, we can verify that d~
is smaller than (In of (3.26), which eliminates this case. In the case

4Ia"I=lb' b'ln n-l n'

inequality (3.28) is also satisfied only for d smaller than dn' Conversely, if
condition (3.11) holds, then the discriminant A ~ is always strictly positive,
the function An has two real zeros, say d~ and dn' and condition (3.28) is
satisfied for d ~ d~ or d ~ dn , where dn is defined by (3.10). However, once
again, we can easily verify that d~ is smaller than dn and finally only the
solution d ~ dn satisfies all conditions. Consequently any z such that x~(d) ~
Iz I~ x~(d) satisfies inequality (3.21) for fixed n.

Now we show that the smallest zero x~ of In is greater than d. Indeed the
parabola In is situated higher than the straight line defined by dropping the
term la~ Ilzl 2

• Then the zero x~ of this parabola is greater than the zero x~

defined by (3.15), which is greater than d.
Finally, for arbitrary x~, (3.13) or (3.15), we obtain

n ~ l: x~(d) > d. (3.29)

We look for the largest set {z} such that x~(d)~lzl~x~(d) for all n with
additional condition (3.17). Then, for d belonging to f,., we define the
higher hull x' of the functions x~ and the lower hull x" of the functions x~:

dE f N : d H x/Cd) = max x~(d),
l,;;,n<N

dHX"(d)= min x~(d).
l,;;,n<N

(3.30)

(3.31 )

Note that according to (3.29) the function identity d H d from (3.17) does
not contribute to the definition of the function x'. Now we look for d
belonging to f,. such that

x'(d) ~ x"(d) (3.32)

and we construct the zero-free region g~ defined by (3.12) as the union of
annular regions where condition (3.32) is satisfied. The region g~ is not
empty because it contains at least the complement of some finite disc. It is
obvious if all a~ = O. The asymptotic behavior of x~ can be obtained by
(3.15):

a~ = 0; d --+ 00: x~(d)~ d.

Conversely, provided that a~ '* 0 and dropping in (3.13) and (3.14) all terms
except the linear ones, we obtain, according to condition (3.11), the
following asymptotic behaviors of x~ and x~:
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1 < y~ < 1.25,

2.75 < y~ < 00.

Then condition (3.32) is always satisfied asymptotically, which proves that
the region .9;; contains the point at infinity.

Analyzing the case a; = 0 we remarked that the point d = dn can be
added to the interval ]dn' 00 [. Indeed this does not change the final result
because x~(dn) = 00 and we have proved that 00 belongs to .9;;.

We conclude that the union .9'N of the regions .9;" and .'?;; contains no
zero of the polynomials P J , ... , PN , which completes the proof. I

Remark. Note that the regions .9;" or (and) .9;; may be empty if
conditions (3.4) or (and) (3.11) are, respectively, not satisfied. In particular
the zero-free region given by Theorem 3.1 may not contain 00, which is a
zero of no polynomial i= O.

The intervals of Iz I determined in Theorem 3.1 are illustrated by a heavy
line in Fig. 1. The subintervals of the interval f,. where condition (3.32) is
satisfied are represented by a heavy line. The knowledge of these subintervals
greatly simplify formula (3.12) for the region .9;;. In fact, in this case we
can take for each subinterval the annular region between the minimum of the
lower hull x' and the maximum of the upper hull x", as in formula (3.6) for
.9;".

___________X,x; xi

Jl"
N

-------~

-------(' i

FJGURE I
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4. ApPLICATION TO THE PADE NUMERATORS AND DENOMINATORS

The particular case of three-term recurrence relation (3.1), where
an = a: =°and bn= I [3], is the well-known Frobenius relation [6], which
generates the numerators of Pade approximants along the columns, or the
denominators of Pade approximants along the rows in the Pade table. We
restate Theorem 3.1 in this particular situation as a corollary, because two
important conditions, (3.4) and (3.11), disappear, greatly simplifying the
results. This corollary, complemented by Theorem 2.1 of the third paper [81,
allows one to find a moon-like region containing all zeros of the polynomials
in question, as has already been mentioned in the Introduction.

COROLLARY 4.1. Let {Pn}~=o be a finite sequence ofpolynomials which
satisfy the following relation with complex coefficients:

where

Then all zeros of the polynomials in question are located in the open annular
region

where

(t-l= l;uo=O),

(4.3)

(4.4 )

(4.5)

Sketch of the Proof According to Theorem 3.1 in the case a: = 0,
formulas (4.3), (4.4) and (4.5) follow from (3.5), (3.9) and (3.8) or (3.15),
respectively. Conditions (3.4) and (3.11) being automatically satisfied, the
regions go~ and go~ are not empty. Then the region C - go~ U c'?~ is a finite
annular domain strictly included in C
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5. LOCATION OF THE ZEROS OF GENERAL

ORTHOGONAL POLYNOMIALS
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The general orthogonal polynomials defined in [10, p. 401 satisfy relation
(3.1), where a~ = a~ = O. The particular case of real positive coefficients
corresponds to the classical orthogonal polynomials, or, in "Pade language,"
to the Stieltjes case. Here condition (3.11) only disappears automatically.
We restate Theorem 3.1 in this particular situation as a corollary, where the
regions DN and TN are clearly the complements of the regions 3';; and 3'N'

COROLLARY 5.1. Let {Pn }~=o be a finite sequence ofpolynomials which
satisfy the following relation with complex coefficients.

where

(5.2)

Then all zeros of the polynomials in question are located in the open disc

where

f" = [ max Ibb
n I' 00 [ ,O<;n<N ~

xn(d) = d -I b~_II(ll~i~Ib~1 d)'

Moreover if the following conditions,

(5.2)

(5.3)

(5.4)

(5.5)

hold, and the interval Y N defined by (3.5) is not empty, then the disc DN

reduces to the open annular region:

TN = {z Eel max min xn(d) <Iz I< min max xn(d)}. (5.6)
de./N O<n<N defN O<n<N

CONCLUSIONS

The analysis of the general three-term recurrence relation allows one to
take advantage of the subtleties of the method presented here. The general
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result leads automatically to many particular cases which are of greatest
importance in practice. Clearly these results can be further simplified if the
coefficients of the recurrence relation present some specific properties. Some
of these cases are studied in subsequent papers [7-9].
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